20 Juni 2013

Summary. EuclidOfAlexandria. Elements. Formaldivisionsofpropositions. BookXII.


Book12.
1)   *.
a)    Let*, let*, Isaythat*.
b)   Forlet*.
c)    Nowsince*, *, and*.
d)   Thus*, therefore*.
e)    Therefore*.
f)     But*, for*, and*, therefore*.
g)    But*, therefore*.
h)   Therefore*.
i)     Therefore*.
j)     But*, and*, thereforealso*.
k)    Therefore, etc.
l)     QED.
2)   *.
a)    Let*, Isaythat*.
b)   Forif*, then*.
c)    Firstlet*.
d)   Let*, hence*.
e)    Let*, therefore*, while*, hence*.
f)     Thus*.
g)    Foritwasprovedinthefirsttheoremofthetenthbookthatif*, andif*, *.
h)   Let*, andlet*.
i)     Therefore*.
j)     Let*, therefore*.
k)    But*, thereforealso*, thereforealternately*.
l)     But*, therefore*.
m)  But*, whichisimpossible.
n)   Therefore*.
o)    Similarlywecanprovethat*.
p)   Isaynextthat*.
q)   Forifpossiblelet*.
r)    Thereforeinversetly*.
s)    But*, thereforealso*, whichwasprovedimpossible.
t)     Therefore*.
u)   Anditwasprovedthat*, therefore*.
v)    Therefore, etc.
w)  QED.
x)    Lemma. Isaythat*.
y)    Forlet*.
z)    Isaythat*.
aa) Forsince*, *.
bb)                  But*, therefore*.
cc)  Hence*.
dd)                  QED.
3)   * and *.
a)    Let*, Isaythat*.
b)   Forlet*.
c)    Since*, therefore*.
d)   Forthesamereason*.
e)    Therefore*, therefore*.
f)     But*, therefore*.
g)    But*, therefore*, and*, therefore*.
h)   Therefore*.
i)     Forthesamereason*.
j)     Nowsince*, *.
k)    Therefore*.
l)     Andsince*, and*, therefore*, therefore*.
m)  Forthesamereason*.
n)   Therefore*.
o)    Andsince*, *, and*, therefore*.
p)   Forthesamereason*, and*.
q)   Nowsince*, *.
r)    Therefore*.
s)    And*, therefore*.
t)     Thereforealso*.
u)   But*.
v)    Therefore*.
w)  Nextsince*, *.
x)    Andsinceif*, andif*, *, therefore*.
y)    Anditismanifestthat*, inasmuchasif*, *.
z)    But*, for*.
aa) Hence*.
bb)                  But*, and*.
cc)  Therefore*.
dd)                  Therefore*.
ee) QED.
4)   If*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forsince*, therefore*, and*.
c)    Forthesamereason*.
d)   Andsince*, therefore*.
e)    And*, therefore*, thereforealternately*.
f)     But*, thereforealso*.
g)    But*.
h)   Thereforealso*.
i)     Thereforealso*.
j)     Thereforealso*.
k)    Andsimilarlyif*, *.
l)     But*.
m)  Thereforealso*.
n)   Andsimilarlyalsoif*, *.
o)    QED.
p)   Lemma. Butthat*, wemustproveasfollows.
q)   Forlet*, *.
r)    Nowsince*, *.
s)    And*, therefore*.
t)     Forthesamereason*.
u)   And*, therefore*.
v)    Therefore*.
w)  Hence*, therefore*.
x)    QED.
5)   *.
a)    Let*, Isaythat*.
b)   Forif*, *.
c)    Letitfirst*, then*.
d)   Againlet*, andlet*.
e)    Let*, andlet*, therefore*.
f)     Let*, therefore*.
g)    But*, thereforealso*, therefore*.
h)   But*, therefore*.
i)     But*, whichisimpossible.
j)     Therefore*.
k)    Similarlyitcanbeprovedthat*.
l)     Isaynextthat*.
m)  Forifpossiblelet*, thereforeinversely*.
n)   But*, thereforealso*, whichwasprovedabsurd.
o)    Therefore*.
p)   Butitwasprovedthat*.
q)   Therefore*.
r)    QED.
6)   *.
a)    Let*, Isaythat*.
b)   Forlet*.
c)    Sincethen*, *, therefore*.
d)   And*.
e)    Butalso*.
f)     Therefore*.
g)    Andagain*.
h)   Similarlyalsoitcanbeprovedthat*.
i)     Andsince*, therefore*.
j)     But*.
k)    Thereforealso*.
l)     Butfurthere*.
m)  Thereforealso*.
n)   QED.
7)   *.
a)    LEt*, Isaythat*.
b)   Forlet*.
c)    Since*, therefore*, thereforealso*.
d)   But*, for*.
e)    Therefore*.
f)     Againsince*, and*, *.
g)    Thereforealso*.
h)   But*, thereforealso*, therefore*.
i)     Andsince*, for*, while*, thereforealso*.
j)     QED.
k)    Porism. Fromthisitismanifestthat*.
8)   *.
a)    Let*, Isaythat*.
b)   Forlet*.
c)    Nowsince*, therefore*, and*, and*.
d)   Andsince*, and*, therefore*.
e)    Forthesamereason*, therefore*.
f)     But*, and*.
g)    Therefore*.
h)   Therefore*.
i)     But*.
j)     Therefore*.
k)    But*.
l)     Therefore*.
m)  QED.
n)   Porism. Fromthisitismanifestthat*.
o)    Forif*, *, then*.
p)   But*, therefore*.
9)   In*, *, and*.
a)    Forlet*, Isaythat*.
b)   Forlet*.
c)    Nowsince*, and*, and*, therefore*.
d)   But*, therefore*.
e)    But*.
f)     Thereforealso*.
g)    But*, and*, therefore*.
h)   Therefore*.
i)     Nextlet*, Isaythat*.
j)     Forwiththesameconstructionsince*, while*, thereforealso*.
k)    But*, and*, therefore*.
l)     But*, therefore*.
m)  And*, therefore*.
n)   Therefore, etc.
o)    QED.
10)         *.
a)    Forlet*, Isaythat*.
b)   Forif*, *.
c)    Firstlet*, andlet*, then8.
d)   Let*.
e)    Then*, and*, while*, thereforealso*, and*, therefore*.
f)     Let*, then*, asweprovedbefore.
g)    Let*, then*, and*.
h)   Thus*, *.
i)     Let*, therefore*.
j)     But*, thereforealso*.
k)    But*, for*, whichisimpossible.
l)     Therefore*.
m)  Isaynextthat*, forifpossiblelet*, therefore*.
n)   Let*, therefore*.
o)    Nowlet*, therefore*, seetingthatasweprovedbeforeif*, andif*, *, for*.
p)   Hencealso*, thereforealso*.
q)   And*, for*.
r)    Therefore*.
s)    Let*, andlet*, thereforealso*.
t)     Now*, thereforealso*.
u)   Thus*.
v)    Let*, andlet*, therefore*.
w)  But*, therefore*.
x)    But*, for*, whichisimpossible.
y)    Therefore*.
z)    Butitwasprovedthat*, therefore*, hence*.
aa) Therefore, etc.
bb)                  QED.
11)         *.
a)    Let*, let*, Isaythat*.
b)   Forifnotthen*, *.
c)    Firstlet*, andlet*, therefore*.
d)   Let*, therefore*.
e)    Let*, therefore*, therefore*, inasmuchasif*, *, for*, while*.
f)     Let*.
g)    Therefore*.
h)   Let*, thereforealso*.
i)     Thus*, and*, *.
j)     Let*.
k)    LEt*, andlet*.
l)     Sincethen*, while*, thereforealso*.
m)  But*, and*.
n)   Thereforealso*, thereforealternately*.
o)    But*, therefore*.
p)   But*, whichisabsurd.
q)   Therefore*.
r)    Similarlywecanprovethat*.
s)    Isaynextthat*.
t)     Forifpossiblelet*, thereforeinversely*.
u)   But*, thereforealso*, whichwasprovedimpossible.
v)    Therefore*.
w)  Butitwasprovedthat*, therefore*.
x)    But*, for*.
y)    Thereforealso*.
z)    Therefore, etc.
aa) QED.
12)         *.
a)    Let*, let*, Isaythat*.
b)   Forif*, *.
c)    Firstlet*.
d)   Let*, therefore*.
e)    Nowlet*, therefore*.
f)     Let*, andlet*.
g)    Therefore*.
h)   Nowlet*, therefore*.
i)     Thus*, and*, *.
j)     Let*, andlet*.
k)    Let*, andlet*, *, and*, andlet*.
l)     Nowsince*, therefore*.
m)  But*, thereforealso*.
n)   Andalternately*.
o)    And*, therefore*.
p)   Againsince*, and*, inasmuchas*, sincethen*, therefore*.
q)   Againsinceitwasprovedthat*, while*, therefore*, and*, for*, therefore*.
r)    Andsince*, and*, therefore*.
s)    Againsince*, and*, therefore*.
t)     Butitwasalsoprovedthat*.
u)   Therefore*.
v)    Therefore*, therefore*, hence*.
w)  Therefore*, for8.
x)    But*.
y)    Therefore*.
z)    Similarly*, wecanprovethat*.
aa) And*, thereforealso*, hencealso*.
bb)                  Butbyhypothesis*, therefore*, thereforealternately*.
cc)  But*, for*.
dd)                  Therefore*.
ee) But*, whichisimpossible.
ff)   Therefore*.
gg) Similarlywecanprovethat*.
hh)                  Isaynextthat*.
ii)    Forifpossiblelet*.
jj)    Thereforeinversely*.
kk) But*.
ll)    Therefore*, whichwasprovedimpossible.
mm)               Therefore*.
nn)                  Butiwasprovedthat*.
oo) Therefore*.
pp)                  But*, for*, therefore*.
qq)                  Therefore, etc.
rr)  QED.
13)         If*, *.
a)    Forlet*, andlet*, Isaythat*.
b)   Forlet*, andlet*, and*, andlet*.
c)    Let*, andlet*.
d)   Thensince*, therefore*.
e)    But*, therefore*.
f)     Sincethen*, and*, and*, therefore*.
g)    Forthesamereason*.
h)   Andif*, if*, *, and*.
i)     Thus*, and*, andithasbeenprovedthatif*, *, *.
j)     Therefore*.
k)    QED.
14)         *.
a)    Forlet*, Isaythat*.
b)   Forlet*, let*, andlet*.
c)    Sincethen*, *.
d)   But*, therefore*.
e)    Andsince*, therefore*.
f)     But*, and*, therefore*.
g)    But*.
h)   Thereforealso*.
i)     QED.
15)         In*, *.
a)    Let*, let*, and*, let*.
b)   Isaythat*.
c)    For*.
d)   Firslet*.
e)    Now*.
f)     But*, therefore*.
g)    Hencealsoreciprocally*.
h)   Nextlet*, butlet*, let*, let*, andlet*.
i)     Nowsince*, therefore*.
j)     But*, for*, and*, for*.
k)    Thereforealso*.
l)     But*, therefore*.
m)  Therefore*.
n)   Next*, Isaythat*.
o)    Forwiththesameconstructionsince*, *, while*, therefore*.
p)   But*, and*, therefore*.
q)   Therefore*.
r)    Andthesameistruefor*.
s)    QED.
16)         Given*, toinscribe*.
a)    Let*, thusitisrequiredtoinscribe*.
b)   Forlet*, andlet*, therefore*.
c)    Then*.
d)   Let*,  andlet*, let*, andlet*, therefore*.
e)    Nowsince*, and*, therefore*, therefore*.
f)     Ifthen*, *.
g)    QEF.
17)         Given*, toinscribe*.
a)    Let*, thusitisrequiredtoinscribe*.
b)   Let*, then*, inasmuchas*, hence*.
c)    Anditismanifestthat*, inasmuchas*.
d)   Letthen*, and*, let*, thenlet*, let*, let*, let*, andlet*.
e)    Let*, andlet*.
f)     Nowsince*, therefore*, hence*.
g)    Andsince*, for*, therefore*.
h)   Therefore*.
i)     Let*, andlet*, andlet*, *, inasmuchas*.
j)     Let*, andlet*.
k)    Nowsince*, and*, therefore*.
l)     But*, therefore*, therefore*, therefore*.
m)  Andsince*, therefore*.
n)   Butitwasalsoproved*, therefore*.
o)    Andsince*, while*, therefore*.
p)   And*, therefore*, inasmuchasif*, and*, *.
q)   Forthesamereason*.
r)    But*.
s)    Ifthen*, *.
t)     Andif*, andfurther*, *.
u)   Isaythat*.
v)    Let*, andlet*, let*.
w)  Thensince*, therefore*.
x)    Therefore*.
y)    Andsince*, *.
z)    And*, for*, and*.
aa) Therefore*.
bb)                  Let*, therefore*, therefore*.
cc)  Similarlywecanprovethat*.
dd)                  Therefore*, and*.
ee) Nowsince*, while*, therefore*.
ff)   But*, therefore*.
gg) Andsince*, and*, and*, therefore*.
hh)                  Let*.
ii)    Thensince*, and*, if*, then*.
jj)    Andif*, *, and*, therefore*.
kk) But*, therefore*.
ll)    Andsince*, *.
mm)               And*, and*, therefore*, and*, therefore*.
nn)                  Therefore*, therefore*.
oo) And*, and*, hence*.
pp)                  Therefore*.
qq)                  QEF.
rr)  Porism. Butif*, *.
ss)  For*.
tt)   But*, therefore*.
uu)                  Similarlyalso*.
vv) And*, hence*.
ww)                QED.
18)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forif*, then*.
c)    Firstlet*, let*, let*, andlet*, therefore*.
d)   But*, therefore*, andalternately*.
e)    But*, therefore*.
f)     But*, for*.
g)    Therefore*.
h)   Similarlywecanprovethat*.
i)     Isaynextthat*.
j)     Forifpossiblelet*, thereforeinversely*.
k)    Butinasmuchas*, therefore*.
l)     Therefore*, whichwasprovedimpossible.
m)  Therefore*.
n)   Butitwasprovedthat*.
o)    Therefore*.
p)   QED.

Keine Kommentare: