20 Juni 2013

Summary. EuclidOfAlexandria. Elements. Formaldivisionsofpropositions. BookX.II.

-->
1)   *.
a)    Let*, sothat*, let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*.
d)   Therefore*.
e)    Nowsince*, therefore*, therefore*, sothat*.
f)     And*, therefore*.
g)    And*, therefore*.
h)   Againsince*, therefore*.
i)     And*, therefore*.
j)     But*, therefore*.
k)    And*, therefore*, therefore*.
l)     Itisnexttobeprovedthat*.
m)  Since*, therefore*.
n)   Therefore*, therefore*.
o)    Andsince*, *, sothat*.
p)   Andsince*, therefore*, sothat*.
q)   And*, and*.
r)    Butif*, andif*, *, therefore*.
s)    And*, and*.
t)     Therefore*.
u)   QED.
2)   *.
a)    Let*, let*, andlet*, Isaythat*.
b)   Forlet*.
c)    Thensince*, therefore*, sothat*.
d)   Therefore*.
e)    And*, therefore*.
f)     Againsince*, *.
g)    And*, therefore*, therefore*.
h)   And*, therefore*, therefore*.
i)     Itisnexttobeprovedthat*.
j)     Forsince*, therefore*, sothat*.
k)    Andsince*, *, sothat*.
l)     And*, therefore*.
m)  And*.
n)   Therefore*.
o)    QED.
3)   *.
a)    Let*, let*, Isaythat*.
b)   Let*.
c)    Thensince*, therefore*, sothat*.
d)   And*, therefore*.
e)    And*, therefore*.
f)     Forthesamereason*.
g)    Andsince*, and*, therefore*.
h)   Hence*, sothat*.
i)     And*, therefore*.
j)     Itistobeprovedthat*.
k)    Inmannersimilartotheforegoingwemayconcludethat*.
l)     And*, therefore*.
m)  And*.
n)   Therefore*.
o)    QED.
4)   *.
a)    Let*, let*, andlet*, Isaythat*.
b)   let*.
c)    Thensince*.
d)   Sincethen*, therefore*, therefore*.
e)    Againsince*, and*, therefore*, therefore*.
f)     Therefore*, therefore*.
g)    Itistobeprovedthat*.
h)   Inmannersimilartotheforegoingwecanprovethat*.
i)     Sincethen*, therefore*, sothat*.
j)     Butif*, andif*, *, therefore*.
k)    And*, and*.
l)     Therefore*.
m)  QED.
5)   *.
a)    Let*, sothat*, let*, andlet*, Isaythat*.
b)   Let*.
c)    Sincethen*, therefore*, but*.
d)   Sincethen*, therefore*, sothat*.
e)    Againsince*, therefore*.
f)     Therefore*, therefore*, therefore*.
g)    Isaynextthat*.
h)   Foritcanbeprovedsimilarlythat*, andthat*, therefore*.
i)     And.
j)     Therefore*.
k)    QED.
6)   *.
a)    Let*, let*, andlet*, Isaythat*.
b)   Forlet*.
c)    Thensince*, therefore*, andmoreover*, sothat*.
d)   And*, therefore*.
e)    Andsince*, therefore*.
f)     Therefore*, therefore*, therefore*.
g)    Isaynextthat*.
h)   Similarlyagainwecanprovethat*, andthat*, andforthesamereason*.
i)     And*.
j)     Therefore*.
k)    QED.
7)   *.
a)    Let*, andlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    Let*, thereforealso*.
d)   But*, therefore*.
e)    And*, therefore*.
f)     And*.
g)    Thereforealternately*.
h)   But*, therefore*.
i)     And*, therefore*.
j)     Isaynextthat*.
k)    For*.
l)     Ifthen*, *.
m)  Andif*, *, andforthisreason*.
n)   Butif*, *, andforthisreasonagain*, for*.
o)    Butif*, *, and*.
p)   Butif*, *.
q)   Andif*, *, and*.
r)    Butif*, *, and*.
s)    Butif*, *, and*.
t)     Hence*.
u)   QED.
8)   *.
a)    Let*, Isaythat*.
b)   Forsince*, let*, therefore*.
c)    Andlet*, therefore*.
d)   But*, therefore*.
e)    But*, therefore*.
f)     Andsince*, and*, *.
g)    But*, therefore*.
h)   Isaynextthat*.
i)     Forsince*, thereforealso*, thereforealternately*.
j)     But*, therefore*.
k)    Iftherefore8, *, andforthisreason*, butif*, *, and*.
l)     Andforthisreason*.
m)  QED.
9)   *.
a)    Let*, Isaythat*.
b)   Let*, therefore*.
c)    Let*.
d)   Thensince*, thereforealso*.
e)    But*, therefore*.
f)     Andsince*, alternatelyalso*, thereforealso*, thereforealso*.
g)    Similarlywecanprovethat*.
h)   Therforealso*, thereforealso*.
i)     But*, therefore*.
j)     And*, therefore*.
k)    Simlarlyalso*.
l)     And*, therefore*.
m)  therefore*, but*, therefore*.
n)   Therefore*.
o)    QED.
10)         *.
a)    Let*, andlet*, itistobeprovedthat*.
b)   Let*, therefore*, but*.
c)    Let*.
d)   Wecanthenprovesimilarlythat*, and* and*, sothat*.
e)    Therefore*.
f)     QED.
11)         *.
a)    Let*, itistobeprovedthat*.
b)   Forsince*, let*, therefore*, andfurthermore*.
c)    Let*.
d)   Wecanthenprovesimilarlythat*, and*, sothat*, *, andmoreover*.
e)    Therefore*.
f)     QED.
12)         *.
a)    Let*, and*, Isaythat*.
b)   For*.
c)    Firstlet*, let*, let*, andlet*.
d)   Thensince*, therefore*.
e)    And*, therefore*.
f)     Againsince*, therefore*.
g)    And*, therefore*.
h)   Andsince*, while*, therefore*, sothat*.
i)     But*, therefore*.
j)     And*, therefore*, therefore*.
k)    Andsince*, while*, therefore*, therefore*.
l)     *.
m)  Firstlet*.
n)   Now*, therefore*.
o)    But*, andif*, *.
p)   Therefore*, sothat*.
q)   Nextlet*.
r)    Now*, therefore*.
s)    But*, andif*, *.
t)     Therefore*, sothat*.
u)   Nextlet*, therefore*, sothat*.
v)    Now*.
w)  Firstlet*.
x)    Now*, therefore*.
y)    But*, andif*, *, therefore*, sothat*.
z)    Nextlet*.
aa) Now*, therefore*.
bb)                  But*, andif*, *.
cc)  Therefore*, sothat*.
dd)                  Therefore, etc.
ee) QED.
13)         If*, *.
a)    Forlet*, Isaythat*.
b)   For*.
c)    Firstif*, let*.
d)   Let*, andlet*, and*.
e)    Nowsince*, therefore*.
f)     And*, therefore*.
g)    Andsince*, and*, therefore*.
h)   But*, therefore*.
i)     Therefore*, therefore*.
j)     But*.
k)    Firstlet*.
l)     Now*, therefore*.
m)  But*, andif*, *, therefore*.
n)   Nextlet*.
o)    Now*, therefore*.
p)   Butif*, *, sothat*.
q)   Therefore, etc.
r)    QED.
s)    *.
t)     Forif*, *.
u)   Butif*, *.
v)    If*, *.
w)  If*, *.
x)    If*, *.
y)    If*, *.
z)    If*, *.
aa) If*, *.
bb)                  If*, *.
cc)  And*, sothat*.
14)         If*, *, andletitbecalled an apotome.
a)    Forlet*, let*, Isaythat*.
b)   Forsince*, and*, therefore*.
c)    But*, and*.
d)   And*, therefore*.
e)    But*, therefore*.
f)     Andletitbecalled*.
g)    QED.
15)         If*, *, andletitbecalled a firstapotomeofamedialstraightline.
a)    Forlet*, Isaythat*.
b)   Forsince*, *.
c)    But*, therefore*, therefore*, sinceif*, *.
d)   But*, therefore*, therefore*.
e)    Andletitbecalled*.
f)     QED.
16)         If*, *, andletitbecalled a secondapotomeofamedialstraightline.
a)    Forlet*, Isaythat*.
b)   Forlet*, let*, andlet*, therefore*.
c)    Nowsince*, therefore*.
d)   And*, therefore*.
e)    Againsince*, therefore*.
f)     And*, therefore*.
g)    And*, therefore*.
h)   Andsince*, therefore*, therefore*.
i)     But*, and*, therefore*.
j)     But*, and*, therefore*.
k)    But*, therefore*.
l)     And*, therefore*, therefore*.
m)  But*, and*, and*.
n)   And*, therefore*.
o)    Andletitbecalled*.
p)   QED.
17)         If*, *, andletitbecalled minor.
a)    Forlet*.
b)   Isaythat*.
c)    Forsince*, while*, therefore*, and*.
d)   But*, therefore*, therefore*.
e)    Andletitbecalled*.
f)     QED.
18)         If*, *, andletitbecalled thatwhichproduceswitharationalareaamedialwhole.
a)    Forlet*, Isaythat*.
b)   Forsince*, while*, therefore*, therefore*.
c)    And*, therefore*, therefore*.
d)   Andletitbecalled*.
e)    QED.
19)         If*, *, andfurther*, andletitbecalled thatwhichproduceswithamedialwhole.
a)    Forlet*, Isaythat*.
b)   Forlet*, let*, andlet*.
c)    Therefore8, sothat*.
d)   Nowsince*, therefore*.
e)    And*, therefore*.
f)     Againsince*, therefore*.
g)    And*, therefore*.
h)   Andsince*, therefore*.
i)     But*, therefore*.
j)     And*, therefore*.
k)    Therefore*.
l)     And*, but*, and*.
m)  And*, therefore*.
n)   Andletitbecalled*.
20)         To*, *.
a)    Let*, therefore*.
b)   Isaythat*.
c)    Forifpossiblelet*, therefore*.
d)   Nowsince*, *, for*, therefore*.
e)    But*, therefore*, whichisimpossiblefor*, and*.
f)     Therefore*.
g)    Therefore*.
h)   QED.
21)         To*, *.
a)    Forlet*, therefore*, Isaythat*.
b)   Forifpossiblelet*, therefore*.
c)    Nowsince*, for*, thereforealternately*.
d)   But*, for*.
e)    Therefore*, whichisimpossible*, for*, and*.
f)     Therefore, etc.
g)    QED.
22)         To*, *.
a)    Let*, therefore*.
b)   Isaythat*.
c)    Forifpossiblelet*, therefore*.
d)   Let*, let*, andlet*, therefore*, sothat*.
e)    Againlet*.
f)     But*, therefore*.
g)    Nowsince*, therefore*.
h)   And*, therefore*.
i)     And*, therefore*.
j)     Againsince*, *.
k)    And*, therefore*.
l)     And*, therefore*.
m)  Andsince*, therefore*.
n)   But*, therefore*.
o)    But*, therefore*.
p)   And*, while*, therefore*.
q)   But*, therefore*.
r)    And*, therefore*, therefore*.
s)    Similarlywecanprovethat*, therefore*, whichisimpossible.
t)     Therefore, etc.
u)   QED.
23)         To*, *.
a)    Let*, therefore*.
b)   Isaythat*.
c)    Forifpossiblelet*, therefore*.
d)   Nowsince*, while*, therefore*, whichisimpossiblefor*.
e)    Therefore*.
f)     QED.
24)         To*, *.
a)    Let*, andlet*, therefore*.
b)   Isaythat*.
c)    Forifpossiblelet*, therefore*.
d)   Sincethen*, while*, for*, therefore*, whichisimpossiblefor*.
e)    Therefore*, therefore*.
f)     QED.
25)         To*, *.
a)    Let*, therefore*.
b)   Isaythat*.
c)    Forifpossiblelet*, sothat*.
d)   Let*, let*, andlet*, therefore*, therefore*.
e)    Againlet*.
f)     But*, therefore*.
g)    Nowsince*, therefore8.
h)   And*, therefore*.
i)     Againsince*, therefore*.
j)     And*, therefore*.
k)    Andsince*, *, therefore*.
l)     And*, therefore*, therefore*.
m)  Similarlywecanprovethat*.
n)   Therefore*, whichwasprovedimpossible.
o)    Therefore*.
p)   Therefore*.
q)   QED.
26)         Tofind*.
a)    Let*, andlet*, therefore*.
b)   Let*, therefore*.
c)    Let*, therefore*.
d)   But*, therefore*, therefore*.
e)    Andsince*, therefore*, therefore*.
f)     And*, therefore*, therefore*.
g)    Isaynextthat*.
h)   Forlet*.
i)     Nowsince*, thereforealso*.
j)     But*, therefore*, therefore*.
k)    And*, therefore*.
l)     And*.
m)  Therefore*.
n)   Therefore*.
o)    Beingthatwhichitwasrequiredtofind.
27)         Tofind*.
a)    Let*, therefore*.
b)   Let*.
c)    Nowlet*.
d)   Therefore*.
e)    But*, therefore*, therefore*.
f)     Andsince*, *.
g)    And*, therefore*, therefore*.
h)   Isaynextthat*.
i)     Forlet*.
j)     Sincethen*, therefore*.
k)    And*, therefore*, therefore*.
l)     And*.
m)  And*.
n)   Therefore*.
o)    Therefore*.
p)   QED.
28)         Tofind*.
a)    Let*, let*, butlet*.
b)   Let*, and*.
c)    Sincethen*, therefore*.
d)   But*, therefore*, therefore*.
e)    Andsince*, therefore*, therefore*.
f)     Againsince*, therefore*.
g)    But*, therefore*, therefore*.
h)   Andsince*, therefore*, therefore*.
i)     And*, therefore*, therefore*.
j)     Isaynextthat*.
k)    Forsince*, and*, therefore*.
l)     But*, therefore*, therefore*.
m)  Therefore*.
n)   Nowlet*.
o)    Sincethen*, therefore*.
p)   But*, therefore*.
q)   Therefore*, and*.
r)    And*, therefore*.
s)    Therefore*.
t)     QED.
29)         Tofind*.
a)    Let*, therefore*.
b)   Let*.
c)    Let*, therefore*.
d)   But*, therefore*, therefore*.
e)    Nowsince*, therefore*, therefore*.
f)     And*, therefore*, therefore*.
g)    Nowlet*.
h)   Sincethen*, thereforealso*.
i)     But*, therefore*, therefore*.
j)     And*, therefore*.
k)    And*.
l)     Therefore*.
m)  Therefore*.
n)   QED.
30)         Tofind*.
a)    Let*, andlet*, therefore*.
b)   let*, andlet*,.
c)    Therefore*, therefore*.
d)   Nowsince*, *, while*, therefore*, therefore*.
e)    And*, therefore*, therefore*.
f)     Isaynextthat*.
g)    Forlet*.
h)   Sincethen*, therefore*.
i)     But*, therefore*, therefore*.
j)     And*, therefore*.
k)    And*, therefore*.
l)     Therefore*.
m)  QED.
31)         Tofind*.
a)    Let*, andfurtherlet*.
b)   Let*.
c)    Nowsince*, therefore*.
d)   But*, therefore*, therefore*.
e)    Andsince*, therefore*, therefore*.
f)     Againsince*, therefore*.
g)    But*, therefore*, therefore*.
h)   Andsince*, therefore*, therefore*.
i)     And*, therefore*, therefore*.
j)     Isaynextthat*.
k)    Forsince*, and*, therefore*.
l)     But*, therefore*, therefore*, therefore*.
m)  Nowlet*.
n)   Sincethen*, therefore*.
o)    But*, therefore*, therefore*.
p)   And*, therefore*.
q)   And*.
r)    Therefore*.
s)    Therefore*.
t)     QED.
32)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    And*, iftherefore*, *.
d)   Let*, let*, andlet*, therefore*.
e)    Andthrough*, let*.
f)     Nowsince*, therefore*.
g)    But*, therefore*.
h)   And*, therefore*, sothat*.
i)     Nowsince*, therefore*.
j)     But*, therefore*, therefore*.
k)    Nowlet*, therefore*.
l)     Let*, andlet*.
m)  Sincethen*, therefore*.
n)   But*, and*, therefore*.
o)    But*aswasbeforeproved, and*, therefore*.
p)   But*, therefore*.
q)   But*, therefore*.
r)    But*, therefore*, therefore*.
s)    Isaynextthat*.
t)     Forsince*, and*, therefore*, therefore*.
u)   Againsince*, therefore*.
v)    Sincethen*, while*, therefore*.
w)  But*, therefore*.
x)    And*, therefore*, therefore*.
y)    And*, therefore*.
z)    Therefore, etc.
aa) QED.
33)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*, and*, while*.
c)    Sincethen*, thereforeif*, *.
d)   Letthen*, let*, andlet*, therefore*.
e)    Therefore*.
f)     But*, therefore*, therefore*.
g)    Againsince*, therefore*.
h)   But*.
i)     Therefore*.
j)     Let*, andlet*, therefore*.
k)    Let*.
l)     Sincethen*, *, therefore*.
m)  Andsince*, therefore*, while*, and*, therefore*.
n)   But*, and*, therefore*.
o)    But*, and*, therefore*.
p)   Sincethen*, and*, therefore*.
q)   But*, therefore*, therefore*.
r)    Isaythat*.
s)    Forsince*, therefore8.
t)     But*, therefore*.
u)   But*, therefore*.
v)    Therefore*, therefore*.
w)  And*.
x)    Therefore*.
y)    QED.
34)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*, and*, while*.
c)    Sincethen*, thereforeif*, *.
d)   Let*, let*, andlet*.
e)    Let*.
f)     Therefore*, therefore*.
g)    Andsince*, therefore*.
h)   But*, sothat*.
i)     Therefore*.
j)     Againsince*, therefore*.
k)    But*, therefore*, therefore*.
l)     Andsince*, therefore*.
m)  But*, therefore*.
n)   But*, therefore*.
o)    Nowlet*, andlet*, therefore*.
p)   Let*, andlet*.
q)   Nowsince*, therefore*.
r)    But*, and*, thereforealso*, therefore*.
s)    But*, and*, therefore*.
t)     But*, and*, therefore*.
u)   But*, therefore*, therefore*.
v)    Isaythat*.
w)  Forsince*, therefore*, therefore*.
x)    Andsince*, therefore*.
y)    Againsince*, therefore*, sothat*, therefore*.
z)    Isaynextthat*.
aa) Forsince*, therefore*, sothat*.
bb)                  Therefore*.
cc)  Therefore*.
dd)                  QED.
35)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*, and*.
c)    Sincethen*, thereforeif*, *.
d)   Letthen*, let*, andlet*, therefore*.
e)    Let*.
f)     Sincethen*, therefore*.
g)    Againsince*, therefore*.
h)   Againsince*, therefore*.
i)     Nowlet*, andlet*.
j)     Therefore*.
k)    Let*, andlet*.
l)     Sincethen*, therefore*.
m)  But*, as*, therefore*.
n)   But*, and*, therefore*.
o)    But*, therefore*.
p)   Sincethen*, and*, therefore*, therefore*.
q)   Isaythat*.
r)    Forsince*, therefore*.
s)    Againsince*, and*, therefore*.
t)     Andsince*, therefore*.
u)   Therefore*, but*.
v)    Therefore*, and*.
w)  Therefore*.
x)    QED.
36)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Thereforeif*, *.
d)   Let*, let*, therefore*.
e)    Nowsince*, therefore*.
f)     Againsince*, *.
g)    Nowlet*, andlet*, therefore*.
h)   Let*, andlet*.
i)     Similarlythenwecanprovethat*.
j)     Isaythat*.
k)    Forsince*, therefore*.
l)     Againsince*, *.
m)  Andsince*, therefore*, therefore*.
n)   Therefore*, and*.
o)    Therefore*.
p)   QED.
37)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*, and*.
c)    Sincethen*, thereforeif*, *.
d)   Let*, let*, andlet*, therefore*.
e)    But*, therefore*.
f)     Andsince*, therefore*.
g)    Againsince*, therefore*.
h)   Nowsince*, therefore*.
i)     But*, therefore*.
j)     Nowlet*, andlet*, therefore*.
k)    Let*, andlet*.
l)     Theninmannersimilartotheabovewecanprovethat*.
m)  Isaythat*.
n)   Forsince*, therefore*.
o)    Againsince*, *.
p)   Andsince*, *.
q)   Andsince*, therefore*, therefore*, andfurther*.
r)    Therefore*, and*.
s)    Therefore*.
t)     QED.
38)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*.
d)   Therefore*, therefore*.
e)    Let*, andlet*, therefore*.
f)     Nowsince*, and*, therefore*.
g)    And*, therefore*.
h)   Againsince*, therefore*.
i)     And*, therefore*.
j)     Andsince*, while*, therefore*.
k)    And*, and*, therefore*.
l)     But*, therefore*.
m)  And*, therefore*, therefore*.
n)   Isaynextthat*.
o)    Forsince*, and*, and*, therefore*, therefore*.
p)   But*, and*, therefore*.
q)   Andsince*, *.
r)    But*, therefore*.
s)    Sincethen*, and*, while*, therefore*.
t)     And*, therefore*.
u)   Therefore, etc.
v)    QED.
39)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*, therefore*, therefore*.
d)   And*, therefore*.
e)    Nowsince*, and*, therefore*.
f)     But*, therefore*.
g)    And*, therefore*.
h)   Nowsince*, while*, therefore*.
i)     But*, therefore*.
j)     And*, therefore*, therefore*.
k)    Isaynextthat*.
l)     Forlet*, andlet*, therefore*.
m)  Nowsince*, and*, and*, therefore*, therefore*.
n)   But*, and*, therefore*, therefore*.
o)    Sincethen*, therefore*.
p)   And*, therefore*.
q)   Therefore, etc.
r)    QED.
40)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*, andlet*, therefore*, therefore*.
d)   And*, therefore*.
e)    Nowsince*, and*, therefore*.
f)     Let*, andlet*, therefore*.
g)    Let*, andlet*, therefore*.
h)   But*, therefore*.
i)     And*, therefore*.
j)     Andsince*, therefore*, therefore*.
k)    But*, and*, therefore*.
l)     But*, and*, therefore*.
m)  But*, therefore*.
n)   And*, therefore*, therefore*.
o)    Isaynextthat*.
p)   Forsince*, therefore*, sothat*.
q)   Andsince*, and*, and*, therefore*, therefore*.
r)    But*, and*, therefore*, therefore*.
s)    Sincethen*, therefore*.
t)     And*, therefore*.
u)   Therefore, etc.
v)    QED.
41)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*, and*, therefore*.
d)   And*, therefore*.
e)    And*, therefore*.
f)     Andsince*, and*, therefore*.
g)    Let*, andlet*, therefore*.
h)   Andsince*, therefore*.
i)     And*, therefore*.
j)     Andsince*, while*, *.
k)    But*, and*, therefore*.
l)     But*, therefore*.
m)  And*, therefore*, therefore*.
n)   Isaythat*.
o)    Forsince*, therefore*.
p)   And*, and*, therefore*.
q)   But*, therefore*.
r)    Andsince*, and*, and*, therefore*, therefore*.
s)    But*, and*, therefore*, therefore*.
t)     Sincethen*, therefore*.
u)   And*, therefore*.
v)    Therefore, etc.
w)  QED.
42)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*, therefore*.
d)   But*, therefore*.
e)    And*, therefore*.
f)     Andsince*, and*, therefore*.
g)    Let*, andlet*, therefore*.
h)   Andsince*, therefore*.
i)     And*, therefore*.
j)     Nowsince*, therefore*.
k)    But*, therefore*.
l)     And*, therefore*, therefore*.
m)  Isaynextthat*.
n)   Forwecanprovesimilarlythat*.
o)    Andsince*, while*, and*, therefore*.
p)   But*, therefore*.
q)   Sincethen*, and*, therefore*.
r)    And*, therefore*.
s)    QED.
43)         If*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Nowlet*, and*, therefore*, therefore*.
d)   And*, therefore*.
e)    Sincenow*, and*, therefore*.
f)     And*, therefore*.
g)    And*, therefore*.
h)   Andsince*, and*, and*, therefore*.
i)     But*, therefore*.
j)     And*.
k)    Therefore*.
l)     Isaynextthat*.
m)  Forsince*, let*, andlet*, therefore*.
n)   Andsince*, therefore*.
o)    But*, and*, therefore*.
p)   But*, therefore*.
q)   Andsince*, and*, and*, therefore*, therefore*.
r)    Andforthesamereasonasbefore*.
s)    And*, therefore*.
t)     QED.
44)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forsince*, let*, therefore*.
c)    Let*, thereforealso*, thereforealso*.
d)   But*.
e)    Therefore*.
f)     And*, therefore*.
g)    Nowsince*, alternatelytherefore*.
h)   And*.
i)     Ifthen*, *.
j)     Andif*, if*, andif*, then*.
k)    Butif*, *.
l)     Andif*, if*, andif*, *.
m)  Therefore*.
n)   QED.
45)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forsince*, let*.
c)    Therefore*.
d)   Let*, therefore*.
e)    But*, therefore*, therefore*.
f)     Isaynextthat*.
g)    Since*, thereforealso*.
h)   But*, therefore*.
i)     Thereforeif*, *, andif*, *.
j)     Therefore*.
k)    QED.
46)         *.
a)    Let*, Isaythat*.
b)   Let*, thensince*, therefore*.
c)    Nowsince*, thereforealso*.
d)   Therefore*.
e)    But*, therefore*.
f)     But*, therefore*.
g)    Againsince*, while*, therefore*.
h)   But*, therefore*, therefore*.
i)     Therefore*.
j)     QED.
47)         *.
a)    Let*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*.
d)   Thenwecanproveinmannersimilartotheforegoingthat*, and*, sothat*.
e)    Therefore*.
f)     QED.
48)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, andlet*, therefore*.
c)    Nowaswasproved*, therefore*.
d)   Therefore*.
e)    QED.
49)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, let*, andlet*, therefore*.
c)    Sincethen*, while*, therefore*.
d)   And*, therefore*, while*, therefore*.
e)    Therefore*, therefore*.
f)     Now*.
g)    Firstlet*.
h)   Now*, therefore*.
i)     But*.
j)     Therefore*.
k)    Butif*, while* *.
l)     But*.
m)  QED.
50)         If*, *.
a)    Forfrom*, let*.
b)   Isaythat*.
c)    Forlet*, andlet*.
d)   Itfollowsthenthat*, while*, therefore*, therefore*.
e)    Now*.
f)     Ifthen*, while*, *.
g)    But*, sothat*.
h)   Butif*, while*, *, sothat*.
i)     QED.
51)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, and*, itfollowsthat*.
c)    Andsince*, therefore*, therefore*.
d)   Ifthen*, while*, *.
e)    But*, and*, and*, sothat*.
f)     Butif*, while*, *.
g)    But*.
h)   Therefore*.
i)     QED.
52)         *. *.
a)    Let*, Isaythat*.
b)   Forifpossiblelet*, let*.
c)    thensince*, *.
d)   Let*, therefore*, *, and*.
e)    Againsince*, therefore*.
f)     Let*, therefore*, and*.
g)    Therefore*, therefore*.
h)   But*, therefore*.
i)     Therefore*, therefore*.
j)     But*, whichisimpossible.
k)    Therefore*.
l)     QED.
m)  *.
n)   For*if*, *, whileif*, *, if*, *, if*, *, if*, *, *if*, andif*, *.
o)    Sincethen*, andfrom*, andfrom*, itisclearthat*.
p)   Andsince*, butif*, * therefore*, sothat*.
q)   Medial, Binomial, Firstbimedial, Secondbimedial, Major, "Side"ofarationalplusamedialarea, "Side"ofthesumoftwomedialareas, Apotome, Firstapotomeofamedialstraightline, Secondapotomeofamedialstraightline, Minor, Producingwitharationalareaamedialwhole, Producingwithamedialareaamedialwhole.
53)         *, andfurther*.
a)    Let*, let*, let*, Isaythat*.
b)   Foragainlet*.
c)    Sincethen*, therefore*.
d)   But*, therefore*.
e)    Let*, therefore*, therefore*.
f)     Let*, therefore*, for*.
g)    But*, thereforealso*.
h)   But* therefore*.
i)     And*, since*.
j)     Therefore*, sothat*.
k)    Nowsince*, while*, therefore*.
l)     And*, therefore*, sothat*.
m)  Sincethen*, while*, therefore*.
n)   But*, therefore*.
o)    Therefore*, therefore*.
p)   Now*.
q)   Ifthen*, *.
r)    Andif*, *, if*, *, butif*, *.
s)    Butif*, *.
t)     Andif*, *, if*, *, butif*, *, sothat*.
u)   QED.
54)         If*, andfurther*.
a)    Let*, sothat*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*.
d)   But*, therefore*.
e)    And*, therefore*.
f)     But*, therefore*.
g)    Let*, therefore*.
h)   Andsince*, therefore*.
i)     Let*, thereforealso*.
j)     But*, therefore*.
k)    Andsince*, while*, thereforealso*, sothatalso*, thereforealso*.
l)     But*, for*, therefore*, sothat*.
m)  But*, therefore*.
n)   Andsince*, alternately*.
o)    But*, therefore*.
p)   But*, therefore*, therefore*.
q)   Ifnow*, *.
r)    Andif*, *, if*, *, butif*, *.
s)    Butif*, *.
t)     Andif*, *, if*, *, butif*, *.
u)   Therefore*, andfurther*.
v)    QED.
55)         If*, *.
a)    Forlet*, andlet*, let*, andlet*, Isaythat*.
b)   Forlet*, andlet*.
c)    Therefore*.
d)   Let*.
e)    But*, therefore*.
f)     Thereforealternately*, thereforealso*.
g)    But*, therefore*.
h)   And*, therefore*.
i)     But*, therefore*.
j)     But*, therefore*.
k)    But*, therefore*, therefore*.
l)     And*.
m)  Therefore, etc.
n)   QED.
o)    Porism. Anditismademanifesttousbythisalsothat*.
56)         From*, *.
a)    Let*, Isaythat8.
b)   Let*, therefore*, for*.
c)    And*, for*.
d)   Againlet*, therefore*.
e)    Therefore*, and*if*.
f)     Similarlyif*, itismanifestthat*.
g)    QED.

Keine Kommentare: