20 Juni 2013

Summary. EuclidOfAlexandria. Elements. Formaldivisionsofpropositions. BookX.01.


Book10
1)   Two*, if*, if*, *.
a)    Let*, Isaythat*.
b)   For*.
c)    Let*, andlet*, let*, from*, let*, andfrom*, andlet*.
d)   Let*.
e)    Nowsince*, andfrom*, andfrom*, therefore*.
f)     Andsince*, and*, and*, therefore*.
g)    Andsince*, and*, and*, therefore*.
h)   But*, therefore*.
i)     Therefore*.
j)     Therefore*.
k)    QED.
l)     Porism. Andthethereomcanbesimilarlyprovedevenif*.
2)   Ifwhen*, *.
a)    For*, let*, Isaythat*.
b)   Forif*, *.
c)    Let*ifpossible, andlet*, let*, let*, andlet*.
d)   Supposethisdoneandlet*.
e)    Thensince*, while*, therefore*.
f)     But*, therefore*.
g)    But*, therefore*.
h)   But*, therefore*, whichisimpossible.
i)     Therefore*, therefore*.
j)     Therefore, etc.
k)    QED.
3)   Given*, tofind*.
a)    Let*, thusitisrequiredtofind*.
b)   Now*.
c)    Ifthen*.
d)   Anditismanifestthat*, for*.
e)    Nextlet*.
f)     Thenif*, *, because*, let*, let*, andlet*.
g)    Sincethen*, while*, therefore*.
h)   But*, therefore*.
i)     But*, therefore*.
j)     But*, therefore*.
k)    Therefore*.
l)     Isaynextthat*.
m)  Forifnot*.
n)   Let*.
o)    Sincethen*, while*, therefore*.
p)   But*, therefore*.
q)   But*, therefore*.
r)    But*, and*, whichisimpossible.
s)    Therefore*, threrefore*.
t)     Therefore*.
u)   QED.
v)    Porism. Fromthisitismanifestthatif*, *.
4)   Given*, tofind*.
a)    Let*, thusitisrequiredtofind*.
b)   Let*, andlet*, then*.
c)    Firstlet*.
d)   Sincethen*, while*, therefore*.
e)    Anditismanifestthat*, for*.
f)     Nextlet*.
g)    Isayfirstthat*.
h)   Forsince*, *, and*, sothat*.
i)     But*, sothat*, therefore*.
j)     Nowlet*, andlet*.
k)    Sincethen*, while*, therefore*.
l)     But*, therefore*, therefore*.
m)  Isaynextthat*.
n)   Forifpossiblelet*, andlet*.
o)    Nowsince*, *, and*.
p)   But*, therefore*.
q)   But*, therefore*, therefore*.
r)    But*, therefore*, whichisimpossible.
s)    Therefore*, therefore*.
t)     Therefore*.
u)   Porism. Fromthisitismanifestthatif*, *.
v)    Similarlytoo*.
w)  QED.
5)   *.
a)    Let*, Isaythat*.
b)   Forsince*, *.
c)    Let*, andlet*.
d)   Andlet*, andlet*.
e)    Sincethen*, while*, therefore*, therefore*, therefore*.
f)     Againsince*, while*, therefore*, therefore*.
g)    Butitwasalsoprovedthat*, therefore*.
h)   Therefore*.
i)     QED.
6)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, andlet*, andlet*.
c)    Sincethen*, *, therefore*.
d)   But*, therefore*.
e)    Andsince*, therefore*.
f)     Againsince*, therefore*.
g)    Butiwasalsoprovedthat*, therefore*.
h)   But*, thereforealso*.
i)     Therefore*, therefore*.
j)     But*, therefore*.
k)    Further*, therefore*.
l)     Therefore*.
m)  Therefore, etc.
n)   QED.
o)    Porism. Fromthisitismanifesthatif*, *. Andif*, *. But*, therefore*.
7)   *.
a)    Let*, Isaythat*.
b)   Forif*, *.
c)    Butitisnot*, therefore*.
d)   Therefore, etc.
e)    QED.
8)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forif*, *.
c)    Butithasnot*, therefore*.
d)   Therefore, etc.
e)    QED.
9)   *.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    Let*.
d)   Sincethen*, while*, for*, and*, for*, thereforealso*.
e)    Nextas*, solet*, Isaythat*.
f)     Forsince*, *, while*, and*, thereforealso*.
g)    Therefore*, therefore*.
h)   Nextlet*, Isaythat*.
i)     Forif*, *.
j)     Butitisnottherefore*.
k)    Againlet*, Isaythat*.
l)     Forif*, *.
m)  Butithasnottherefore*.
n)   Therefore, etc.
o)    Porism. Anditismanifestfromwhathasbeenprovedthat*.
p)   Lemma. Ithasbeenprovedinthearithmeticalbooksthat*, andthat*. Anditismanifestfromthesepropositionsthat*. Forif*, *. Therefore*.
10)         Tofind*.
a)    Let*, thusitisrequiredtofind*.
b)   Let*, andlet*, for*, therefore*.
c)    Andsince*, therefore*, therefore*.
d)   Let*, therefore*.
e)    But*, therefore*, therefore*.
f)     Therefore*.
g)    QED.
11)         If*, *, andif*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    Andas*, therefore*, therefore*.
d)   Nextlet*, Isaythat*.
e)    Forsince*, therefore*.
f)     Andas*, therefore*, therefore*.
g)    Therefore, etc.
h)   QED.
12)         *.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    Let*.
d)   Againsince*, therefore*.
e)    Let*, and*, let*, sothat*, and*.
f)     Sincethen*, while*, thereforealso*.
g)    Againsince*, while*, thereforealso*.
h)   Butalso*, therefore*.
i)     Therefore*, therefore*.
j)     Therefore, etc.
k)    QED.
13)         If*, *.
a)    LEt*, andlet*, Isaythat*.
b)   Forif*, while*, *.
c)    But*, whichisimpossible.
d)   Therefore*, therefore*.
e)    Therefore, etc.
f)     QED.
g)    Lemma. Given*, tofind*.
h)   Let*, andlet*, thusitisrequiredtofind*.
i)     Let*, andlet*, let*.
j)     Itisthenmanifestthat*, andthat*.
k)    Similarlyalso*.
l)     Let*, andlet*.
m)  Let*.
n)   Itisagainmanifestthat*.
o)    QED.
14)         If*, *, andif*, *.
a)    Let*, andlet*, andlet*, Isaythat*.
b)   Forsinceas*, thereforealso*.
c)    But*, and*.
d)   Therefore*, therefore*, thereforealso*, thereforeinversely*.
e)    But*, therefore*.
f)     Thereforeif*, andif*, *.
g)    Therefore, etc.
h)   QED.
15)         If*, *, andif*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, *.
c)    Let*, andlet*.
d)   Sincethen*, *.
e)    But*, therefore*, therefore*.
f)     Nextlet*, Isaythat*.
g)    Forsince*, *.
h)   Let*, andlet*.
i)     Sincethen*, *.
j)     But*, therefore*, therefore*.
k)    Therefore, etc.
l)     QED.
16)         If*, *, andif*, *.
a)    Forlet*, Isaythat*.
b)   Forif*, *.
c)    Let*ifpossible, andlet*.
d)   Sincethen*, therefore*.
e)    But*, therefore*.
f)     Therefore*, but*, whichisimpossible.
g)    Therefore*, therefore*.
h)   Similarlywecanprovethat*.
i)     Therefore*.
j)     Nextlet*.
k)    Firstlet*, Isaythat*.
l)     Forif*, *.
m)  Let*.
n)   Sincethen*, therefore*.
o)    But*, therefore*.
p)   Therefore*, but*, whichisimpossible.
q)   Therefore*, therefore*.
r)    Therefore, etc.
s)    QED.
t)     Lemma. If*, *.
u)   Forlet*, Isaythat*.
v)    Thisisindeedatoncemanifestforsince*, *, and*.
w)  Therefore, etc.
x)    QED.
17)         If*, *, andif*, *.
a)    Let*, andlet*.
b)   Let*, andlet*, Isaythat*.
c)    Forlet*, andlet*.
d)   Therefore*.
e)    Andsince*, and*, therefore*.
f)     And*, therefore*.
g)    But*, and*.
h)   And*, foragain*.
i)     Therefore*, sothat*.
j)     Itistobeprovedthat*.
k)    Since*, therefore*.
l)     But*, for*.
m)  Therefore*, sothat*, therefore*.
n)   Nextlet*, let*, andlet*.
o)    Itistobeprovedthat*.
p)   Withthesameconstructionwecanprovesimilarlythat*.
q)   But*.
r)    Therefore*, sothat*.
s)    But*, sothat*, andtherefore*.
t)     Therefore, etc.
u)   QED.
18)         If*, *, andif*, *. Andif*, *.
a)    Let*, andlet*.
b)   Let*, andlet*, Isaythat*.
c)    Forwiththesameconstructionasbeforewecanprovesimilarlythat*.
d)   Itistobeprovedthat*.
e)    Since*, therefore*.
f)     But*, therefore*, sothat*>
g)    And*, therefore*.
h)   Againlet*, andlet*.
i)     Let*.
j)     Itistobeprovedthat*.
k)    Forwiththesameconstructionwecanprovesimilarlythat*.
l)     But*, therefore*, sothat*.
m)  But*, therefore*, sothat*.
n)   Therefore, etc.
o)    QED.
p)   Lemma.
q)   Sinceithasbeenprovedthat*, while*, but*, if*, *.
r)    Butif*, *, butifagain*, *.
19)         *
a)    Forlet*, Isaythat*.
b)   For*, therefore*.
c)    Andsince*, while*, therefore*.
d)   Andas*.
e)    Therefore*.
f)     But*, therefore*.
g)    Therefore*.
h)   QED.
20)         If*, *.
a)    Forlet*, Isaythat*.
b)   For*, therefore*.
c)    But*, therefore*.
d)   And*.
e)    Therefore*, and*, therefore*.
f)     But*, therefore*.
g)    Therefore, etc.
h)   QED.
21)         If*, *. Letthelatterbecalled medial.
a)    Forlet*, Isaythat*, andlet*.
b)   Forlet*, therefore*.
c)    Andsince*, forbyhypothesis*, therefore*.
d)   And*, therefore*.
e)    But*, therefore*, sothat*.
f)     Andlet*.
g)    QED.
h)   Lemma. If*, *.
i)     Let*.
j)     Isaythat*.
k)    Forlet*, andlet*.
l)     Sincethen*, and*, and*, therefore*.
m)  Similarlyalso*.
n)   QED.
22)         *.
a)    Let*, andlet*, Isaythat*.
b)   Forsince*, *.
c)    Let*.
d)   But*, therefore*.
e)    But*, and*, therefore*.
f)     Thereforealso*.
g)    But*, therefore*.
h)   But*, therefore*, therefore*.
i)     Andsince*, for*, and*, therefore*.
j)     But*, and*, therefore*.
k)    But*, therefore*.
l)     Therefore*.
m)  QED.
23)         *.
a)    Let*, Isaythat*.
b)   Forlet*, andlet*, therefore*.
c)    Andlet*.
d)   Sincethen*, *.
e)    But*, and*, therefore*.
f)     And*, therefore*.
g)    But*, therefore*.
h)   Therefore*.
i)     But*, therefore*.
j)     And*, therefore*.
k)    QED.
l)     Porism. Fromthisitismanifestthat*.
m)  Andinthesamewayaswasexplained*.
n)   Butif*, *, butif*, *.
24)         *.
a)    Forlet*, Isaythat*.
b)   For*, therefore*.
c)    Andsince*, while*, therefore*, sothat*.
d)   But*, therefore*.
e)    QED.
25)         *.
a)    Forlet*, Isaythat*.
b)   For*, therefore*.
c)    Let*, let*, let*, andfurtherlet*, therefore*.
d)   Sincethen*, and*, and*, therefore*.
e)    And*, therefore*.
f)     Andsince*, therefore*.
g)    And*, therefore*.
h)   Therefore*, therefore*.
i)     Andsince*, therefore*.
j)     But*, and*, therefore*.
k)    But*, therefore*, thereforealso*, therefore*.
l)     But*, therefore*.
m)  Therefore*.
n)   Andif*, *, butif*, *, andtherefore*.
o)    Therefore*.
p)   But*, therefore*.
q)   Therefore, etc.
r)    QED.
26)         *.
a)    Forifpossiblelet*, andlet*, let*, andlet*, therefore*.
b)   But*, therefore*.
c)    Sincethen*, and*, therefore*.
d)   And*, therefore*.
e)    Andsince*, and*, therefore*.
f)     But*, and*, therefore*.
g)    And*, therefore*.
h)   But*, and*, therefore*.
i)     But*, therefore*.
j)     But*, therefore*.
k)    Therefore*.
l)     But*, whichisimpossible.
m)  Therefore, etc.
n)   QED.
27)         Tofind*.
a)    Let*, let*, andlet*.
b)   Thensince*, *.
c)    Therefore*.
d)   Andsince*, and*, therefore*.
e)    And*, therefore*.
f)     Therefore*.
g)    Isaythat*.
h)   Forsince*, thereforealternately*.
i)     But*, thereforealso*, therefore*.
j)     But*, therefore*.
k)    Therefore*.
l)     QED.
28)         Tofind*.
a)    Let*, andlet*, andlet*.
b)   Since*, therefore*.
c)    Therefore*.
d)   Andsince*, and*, therefore*.
e)    But*, therefore*.
f)     Therefore*.
g)    Isaynextthat*.
h)   Forsince*, thereforealternately*.
i)     But*, thereforealso*, therefore*.
j)     But*, therefore*.
k)    Therefore*.
l)     QED.
m)  Lemma1. Tofind*.
n)   Let*, andlet*.
o)    Thensince*, *, therefore*.
p)   Let*.
q)   Let*.
r)    Now*.
s)    And*.
t)     Therefore*.
u)   Anditismanifestthat*.
v)    Butwhen*, *.
w)  Lemma2. Tofind*.
x)    Forlet*, and*, andlet*.
y)    Itisthenmanifestthat*.
z)    Let*, therefore*.
aa) Isaythen*.
bb)                  Forif*, *.
cc)  Firstifpossible*, let*, andlet*.
dd)                  Sincethen*, and*, therefore*, therefore*.
ee) Therefore*.
ff)   But*, therefore*.
gg) Andif*, *, whichisabsurd.
hh)                  Therefore*.
ii)    Isaynextthat*.
jj)    Forifpossiblelet*, andlet*.
kk) Nowitwillagainfollowthat*, sothat*, andforthisreason*.
ll)    Butbyhypothesis*.
mm)               Thus*, whichisabsurd.
nn)                  Therefore*.
oo) Anditwasprovedthat*.
pp)                  Therefore*.
qq)                  QED.
29)         Tofind*.
a)    Forlet*, let*, andlet*.
b)   Let*.
c)    Since*, therefore*, therefore*.
d)   But*, therefore*, therefore*.
e)    Andsince*, *, therefore*.
f)     Andsince*, therefore*.
g)    But*, therefore*, therefore*.
h)   And*, therefore*.
i)     Therefore*.
j)     QED.
30)         Tofind*.
a)    Let*, let*, andlet*.
b)   Theninasimilarmannertotheprecedingwecanprovethat*.
c)    Andsince*, therefore*.
d)   But*, therefore*, therefore*.
e)    And*.
f)     Therefore*.
g)    QED.
31)         Tofind*.
a)    Let*.
b)   Andlet*.
c)    Now*, therefore*, therefore*.
d)   Let*.
e)    Now*, therefore*.
f)     Andsince*, while*, and*, therefore*.
g)    But*, thereforealso*.
h)   But*, therefore*.
i)     And*, therefore*.
j)     Andsince*, and*, thereforealso*.
k)    Therefore*.
l)     Similarlyalsoitcanbeprovedthat*.
m)  QED.
32)         Tofind*.
a)    Let*, andlet*.
b)   Therefore*, therefore*.
c)    Let*.
d)   Thensince*, while*, and*, therefore*.
e)    But*, thereforealso*.
f)     But*, therefore*.
g)    But*, therefore*.
h)   Andsince*, while*, thereforealso*.
i)     Isaynextthat*.
j)     Forsince*, therefore*.
k)    Therefore*.
l)     Similarlyitcanbeprovedthat*.
m)  QED.
n)   Lemma. Let*, Isaythat*.
o)    Andfirstthat*.
p)   Forsince*, therefore*.
q)   Andsince*, therefore*, therefore*.
r)    Forthesamereason*.
s)    Andsinceif*, *, therefore*, therefore*.
t)     Isaythat*.
u)   Forsince*, therefore*.
v)    Therefore*.
w)  QED.
33)         Tofind*.
a)    Let*, let*, let*, andlet*, let*, let*, andlet*.
b)   Thensince*, and*, while*, therefore*.
c)    And*, while*, and*, therefore*, therefore*.
d)   Andsince*, therefore*, sothat*.
e)    Andsince*, andbyhypothesis*, therefore*, therefore*, sothat*.
f)     But*, therefore*.
g)    But*, therefore*.
h)   Butitwasalsoprovedthat*.
i)     Therefore*.
j)     QED.
34)         Tofind*.
a)    Let*, let*, let*, let*, therefore*.
b)   Let*, andlet*.
c)    Since*, therefore*.
d)   But*, therefore*.
e)    Andsince*, therefore*.
f)     Andsince*, therefore*.
g)    But*, therefore*.
h)   But*, sothat*.
i)     Therefore*.
j)     QED.
35)         If*, *.
a)    Let*, let*, andlet*.
b)   Thensince*, *.
c)    Andsince*, therefore*.
d)   Andsince*, therefore*, therefore*, sothat*.
e)    But*, therefore*.
f)     And*, therefore*.
g)    Andsince*, while*, therefore*, sothat*.
h)   But*, and*, therefore*.
i)     Therefore*.
j)     QED.
36)         If*, *, andletitbecalled binomial.
a)    Forlet*, Isaythat*.
b)   Forsince*, for*, and*, therefore*.
c)    But*, and*, for*, therefore*.
d)   And*.
e)    But*, therefore*, sothat*.
f)     Andletitbecalled*.
g)    QED.
37)         If*, *, andletitbecalled a firstbimedialstraightline.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*, and*.
c)    But*, therefore*, therefore*.
d)   Andletitbecalled*.
e)    QED.
38)         If*, *, andletitbecalled a secondbimedialstraightline.
a)    Forlet*, Isaythat*.
b)   Forlet*, andlet*.
c)    Thensince*, let*, therefore*.
d)   Andsince*, therefore*.
e)    Buthypothesis*.
f)     And*, while*, therefore*.
g)    And*, therefore*.
h)   Sincethen*, and*, therefore*.
i)     But*, and*.
j)     Therefore*.
k)    But*, and*.
l)     Therefore*, sothat*.
m)  Therefore*, sothat*.
n)   But*, and*, therefore*.
o)    But*, therefore*.
p)   Andletitbecalled*.
q)   QED.
39)         If*, *, andletitbecalled major.
a)    Forlet*, Isaythat*.
b)   Forsince*, *.
c)    But*, therefore*, sothat*, therefore*, sothat*.
d)   Andletitbecalled*.
e)    QED.
40)         If*, *, andletitbecalled a rationalplusamedialarea.
a)    Forlet*, and*, Isaythat*.
b)   Forsince*, while*, therefore*, sothat*.
c)    But*, therefore*.
d)   Therefore*.
e)    Andletitbecalled*.
f)     QED.
41)         If*, *, andletitbecalled thesideofthesumoftwomedialareas.
a)    Forlet*, Isaythat*.
b)   Let*, therefore*.
c)    Nowsince*, therefore*.
d)   And*, therefore*.
e)    Forthesamereason*.
f)     Andsince*, *, sothat*.
g)    And*, therefore*, therefore*.
h)   But*, therefore*.
i)     But*, therefore*.
j)     Andletitbecalled*.
k)    QED.
l)     Lemma. *.
m)  Let*, andlet*, Isaythat*.
n)   Forlet*.
o)    Thensince*, let*, therefore*.
p)   But*, therefore*, therefore*.
q)   Andsince*, andfurther*, therefore*.
r)    And*, therefore*, sothat*.
s)    Thereforealso*.
t)     QED.
42)         *.
a)    Let*, therefore*.
b)   Isaythat*.
c)    Forifpossiblelet*.
d)   Itisthenmanifestthat*.
e)    Forifpossiblelet*.
f)     Then*, and*, thus*, whichiscontrarytothehypothesis.
g)    Therefore*.
h)   Forthisreasonalso*.
i)     Therefore*, because*.
j)     But*, therefore*, whichisabsurdfor*.
k)    Therefore*, therefore*.
l)     QED.
43)         *.
a)    Let*, Isaythat*.
b)   Forifpossiblelet*.
c)    Sincethen*, while*, therefore*, whichisabsurd.
d)   Therefore*, therefore*.
e)    QED.
44)         *.
a)    Let*, sothat*, itisthenmanifestthat*.
b)   Isaythat*.
c)    Forifpossiblelet*, itisthenclearthat*, andsupposethat*.
d)   Nowlet*, let*, andlet*, therefore*.
e)    Nowsince*, therefore*.
f)     And*, therefore*.
g)    Forthesamereason*.
h)   Andsince*, therefore*.
i)     But*, therefore*.
j)     But*.
k)    And*.
l)     Therefore*.
m)  But*, and*, therefore*, sothat*.
n)   And*, therefore*.
o)    Butif*, *.
p)   Therefore*.
q)   Inthesameway*, and*.
r)    And*.
s)    For*.
t)     But*, thereforealso*, sothat*.
u)   Therefore*.
v)    QED.
45)         *.
a)    Let*, Isaythat*.
b)   Forifpossiblelet*.
c)    Thensince*, while*, therefore*, whichisimpossible.
d)   Therefore*, therefore*.
e)    QED.
46)         *.
a)    Let*, sothat*, Isaythat*.
b)   Forifpossiblelet*, sothat*.
c)    Sincethen*, *, while*, therefore*, whichisimpossible.
d)   Therefore*, therefore*.
e)    QED.
47)         *.
a)    Let*, sothat*, Isaythat*.
b)   Forifpossiblelet*, let*, and*, therefore*.
c)    Againlet*, therefore*.
d)   Andsincebyhypothesis*, therefore*.
e)    And*, therefore*.
f)     Forthesamereason*.
g)    Andsince*, therefore*, sothat*.
h)   And*, therefore*, therefore*.
i)     Similarlywecanprovethat*.
j)     And*, therefore*, whichisabsurd.
k)    Therefore*, therefore*.
l)     QED.
48)         Tofind*.
a)    Let*, let*.
b)   Therefore*.
c)    Let*.
d)   But*, therefore*, sothat*.
e)    And*, therefore*.
f)     Andsince*, therefore*, therefore*.
g)    Therefore*, therefore*.
h)   Isaythat*.
i)     Forsince*, while*, therefore*.
j)     Let*.
k)    Nowsince*, therefore*.
l)     But*, therefore*
m)  Therefore*, therefore*.
n)   And*.
o)    Therefore*.
p)   QED.
49)         Tofind*.
a)    Let*, let*, therefore*.
b)   Let*, therefore*.
c)    Therefore*.
d)   Nowsince*, *.
e)    Therefore*, therefore*, therefore*.
f)     Itixnexttobeprovedthat*.
g)    Forsince*, while*, therefore*.
h)   Let*, therefore*.
i)     But*, therefore*.
j)     Therefore*, sothat*.
k)    And*.
l)     Therefore*.
m)  QED.
50)         Tofind*.
a)    Let*.
b)   Let*.
c)    Let*, andlet*, therefore*.
d)   And*, therefore*.
e)    Andsince*, *, therefore*.
f)     Nextlet*, therefore*.
g)    But*, therefore*.
h)   Andsince*, *, therefore*.
i)     Therefore*, therefore*.
j)     Isaynextthat*.
k)    Forsince*, and*, therefore*.
l)     But*, therefore*.
m)  Andsince*, therefore*.
n)   Let*, therefore*.
o)    But*, therefore*.
p)   Therefore*.
q)   And*, and*.
r)    Therefore*.
s)    QED.
51)         Tofind*.
a)    Let*.
b)   Let*, andlet*, therefore*.
c)    Let*, therefore*, therefore*.
d)   Nowsince*, therefore*.
e)    Therefore*.
f)     Isaynextthat*.
g)    Forsince*, therefore*.
h)   Let*, therefore*.
i)     But*, therefore*.
j)     Therefore*, therefore*.
k)    And*, and*.
l)     Therefore*.
m)  QED.
52)         Tofind*.
a)    Let*, let*, andlet*, therefore*.
b)   Let*.
c)    But*, therefore*.
d)   Therefore*, therefore*.
e)    Isaynextthat*.
f)     Forsince*, inversely*, therefore*.
g)    Let*, therefore*.
h)   But*, therefore*.
i)     Therefore*, sothat*.
j)     And*, and*.
k)    Therefore*.
l)     QED.
53)         Tofind*.
a)    Let*, andlet*.
b)   Let*, andlet*, therefore*.
c)    And*, therefore*.
d)   Nowsince*, *, therefore*.
e)    Againlet*. Therefore*.
f)     Therefore*, therefore*.
g)    Andsince*, *, therefore*.
h)   Therefore*, therefore*.
i)     Itisnexttobeprovedthat*.
j)     Forsince*, andalso*, therefore*.
k)    But*, therefore*, therefore*.
l)     Butitwasalsoproved*, therefore*.
m)  Andsince*, therefore*.
n)   But*, sothat*.
o)    Therefore*, therefore*.
p)   And*, and*.
q)   Therefore*.
r)    QED.
s)    Lemma. Let*, andlet*, therefore*.
t)     Let*, Isaythat*.
u)   Forsince*, and*, therefore*.
v)    But*, and*, therefore*.
w)  Therefore*.
x)    And*, therefore*.
y)    Andsince*, while*, and*, thereforealso*.
z)    Therefore*.
aa) Isaynextthat*.
bb)                  Forsince*, for*, and*, while*, and*, thereforealso*.
cc)  Therefore*.
dd)                  Beingwhatitwasrequiredtoprove.
54)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, let*, andlet*.
c)    Itisthenmanifestthat*, and*.
d)   Let*.
e)    Then*, thereforeif*, *.
f)     Letthen*, therefore*.
g)    Let*, let*, andlet*, therefore*.
h)   Andlet*, therefore*.
i)     Nowsince*, therefore*, thereforealso*, therefore*.
j)     But*, and*, therefore*.
k)    But*, therefore*, sothat*.
l)     But*, therefore*, therefore*.
m)  Isaynextthat*.
n)   Forsince*, therefore*.
o)    Butbyhypothesis*, therefore*.
p)   And*, therefore*, therefore*, and*.
q)   But*, therefore*.
r)    Andsince*, while*, therefore*, sothat*.
s)    But*, and*, therefore*.
t)     But*, therefore*.
u)   But*, and*, therefore*.
v)    And*, and*, therefore*.
w)  Therefore*.
x)    QED.
55)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, sothat*, therefore*, and*.
c)    Let*, andlet*, therefore*.
d)   Through*, let*, andlet*, therefore*.
e)    Let*.
f)     Itisthenmanifestfromwhatwasprovedbeforethat*.
g)    Itisnowtobeprovedthat*.
h)   Since*, while*, therefore*.
i)     Andsince*, *.
j)     But*, therefore*.
k)    Therefore*, sothat*.
l)     Hence*.
m)  Therefore*.
n)   Andsince*, *.
o)    Andsince*, while*, therefore*, sothat*.
p)   But*, therefore*.
q)   Isaynextthat*.
r)    Forsince*, therefore*.
s)    And*, therefore*.
t)     Butif*, *.
u)   Therefore*.
v)    QED.
56)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*.
c)    Nowsince*, therefore*.
d)   Theninmannersimilartotheforegoing*, and*, sothat*.
e)    Itisnexttobeprovedthat*.
f)     Since*, and*, therefore*.
g)    And*, therefore*.
h)   Therefore*.
i)     And*, therefore*.
j)     Therefore*.
k)    QED.
57)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    Let*, andlet*, therefore*.
d)   Let*, andlet*, itisthenmanifestthat*.
e)    Itisnexttobeprovedthat*.
f)     Since*, *, therefore*.
g)    Andsince*, *, and*, therefore*.
h)   Andsince*, while*, therefore*.
i)     Therefore*, therefore*.
j)     And*, therefore*.
k)    And*, and*.
l)     Butif*, *.
m)  Therefore*.
n)   QED.
58)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, itisthenmanifestthat*.
c)    Itisthentobeprovedthat*.
d)   Forsince*, therefore*, therefore*.
e)    Andsince*, therefore*.
f)     But*, therefore*.
g)    Therefore*.
h)   Andsince*, while*, therefore*.
i)     And*, therefore*.
j)     And*, therefore*.
k)    Therefore*.
l)     Therefore*.
m)  QED.
59)         If*, *.
a)    Forlet*, Isaythat*.
b)   Let*.
c)    Itisthenmanifestthat*.
d)   Nowsince*, therefore*, therefore*.
e)    Againsince*, therefore*, therefore*, therefore*.
f)     Andsince*, *.
g)    But*, and*, therefore*.
h)   And*.
i)     Therefore*.
j)     QED.
k)    Lemma. Let* andlet*, andlet*.
l)     Isaythat*.
m)  Forlet*.
n)   Sincethen*, sothat*, therefore*.
o)    But*, therefore*.
p)   QED.
60)         *.
a)    Let*, sothat*, let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Let*.
d)   Therefore*.
e)    Nowsince*, therefore*, therefore*, sothat*.
f)     And*, therefore*.
g)    And*, therefore*.
h)   Againsince*, therefore*.
i)     And*, therefore*.
j)     But*, therefore*.
k)    And*, therefore*, therefore*.
l)     Itisnexttobeprovedthat*.
m)  Since*, therefore*.
n)   Therefore*, therefore*.
o)    Andsince*, *, sothat*.
p)   Andsince*, therefore*, sothat*.
q)   And*, and*.
r)    Butif*, andif*, *, therefore*.
s)    And*, and*.
t)     Therefore*.
u)   QED.

Keine Kommentare: