20 Juni 2013

Summary. EuclidOfAlexandria. Elements. Formaldivisionsofpropositions. BookIX.


Book9
1)   If*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*.
c)    Therefore*.
d)   Sincethen*, and*, therefore*.
e)    Andsince*, therefore*.
f)     Butif*, *, sothat*.
g)    And*, therefore*.
h)   QED.
2)   If*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Nowsince*, therefore*.
d)   Andsince*, therefore*.
e)    Therefore*.
f)     And*, therefore*.
g)    Butif*, *, therefore*.
h)   QED.
3)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, andlet*.
c)    Itisthenmanifestthat*.
d)   Nowsince*, therefore*.
e)    Butfurther*, therefore*.
f)     Againsince*, therefore*.
g)    But*, therefore*.
h)   But*, thereforealso*.
i)     Therefore*.
j)     Againsince*, therefore*.
k)    But*, therefore*.
l)     But*, thereforealso*.
m)  Therefore8.
n)   Againsince*, therefore*.
o)    But*, therefore*.
p)   But*, therefore*.
q)   Butif*, *.
r)    And*, therefore*.
s)    QED.
4)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Andsince*, and*, therefore*.
d)   Andsince*, *.
e)    Therefore*, sothat*.
f)     And*, therefore*.
g)    QED.
5)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*, therefore*.
c)    Nowsince*, and*, therefore*.
d)   Andsince*, *.
e)    Therefore*.
f)     And*, therefore*.
g)    And*, therefore*.
h)   QED.
6)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forlet*.
c)    Sincethen*, therefore*.
d)   Andsince*, therefore*.
e)    But*.
f)     Therefore*.
g)    Andsince*, therefore*.
h)   But*.
i)     Therefore*.
j)     But*, thereforealso*.
k)    Andsince*, *.
l)     Therefore*.
m)  And*.
n)   Therefore*.
o)    And*, therefore*.
p)   QED.
7)   If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, *.
c)    Let*, and*let*.
d)   Sincethen*, therefore*.
e)    Andsince*, and*, therefore*.
f)     Therefore*.
g)    QED.
8)   If*, *.
a)    Let*, Isaythat*.
b)   Forsince*, therefore*.
c)    But*, therefore*.
d)   Therefore*, therefore*.
e)    Andsince*, and*, therefore*.
f)     Forthesamereason*.
g)    Similarlywecanprovethat*.
h)   Isaynextthat*.
i)     Forsince*, therefore*.
j)     But*, therefore*.
k)    Therefore*.
l)     Sincethen*, therefore*.
m)  Andsince*, therefore*.
n)   Butitwasalsoproved*, therefore*.
o)    Similarly*.
p)   QED.
9)   If*, *, andif*, *.
a)    Let*, andlet*, Isaythat*.
b)   Nowithasproventhat*, Isaythat*.
c)    Forsince*, and*, therefore*.
d)   Againsince*, and*, *.
e)    Similarlywecanprovethat*.
f)     Nextlet*, Isaythat*.
g)    Nowithasbeenprovedthat*, Isaythat*.
h)   Forsince*, therefore*.
i)     But*, therefore*, therefore*.
j)     And*.
k)    Butif*, *.
l)     Therefore*.
m)  Andsince*, and*, *.
n)   Forthesamereason*.
o)    QED.
10)         If*, *, andif*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forifpossiblelet*.
c)    But*, therefore*.
d)   And*, therefore*, sothat*.
e)    And*, therefore*, whichiscontratytothehypothesis.
f)     Therefore*.
g)    Similarly*.
h)   Nextlet*.
i)     Isaythat*.
j)     Forifpossiblelet*.
k)    Now*, for*.
l)     And*, therefore*.
m)  And*, therefore*.
n)   Andsince*, and*, therefore*, therefore*.
o)    Butif*.
p)   Therefore*, whichiscontrarytothehypothesis.
q)   Similarlywecanprovethat*.
r)    QED.
11)         If*, *.
a)    Let*, Isaythat*.
b)   Forsince*, therefore*, thereforealternately*.
c)    But*, therefore*, sothat*.
d)   QED.
e)    Porism. Anditismanifestthat*.
12)         If*, *.
a)    Let*, Isaythat*.
b)   Forlet*, Isaythat*.
c)    Forsupposeitdoesnotnow*, therefore*.
d)   Andsince*, let*, therefore*.
e)    Againsince*, therefore*.
f)     Butfurther*, therefore*.
g)    Therefore*.
h)   But*, and*, therefore*.
i)     Let*, therefore*.
j)     Butfurther*.
k)    Therefore*.
l)     Therefore*.
m)  But*, and*, therefore*.
n)   Let*, therefore*.
o)    Butfurther*, therefore*.
p)   Therefore*.
q)   But*, and*, therefore*.
r)    Butagain*, whichisimpossible.
s)    Therefore*.
t)     Therefore*.
u)   But*.
v)    Andsince*, and*, therefore*, sothat*.
w)  Similarlywecanprovethat*.
x)    QED.
13)         If*, *.
a)    Let*, Isaythat*.
b)   Forifpossiblelet*.
c)    Itisthenmanifestthat*.
d)   Forif*, *, whichisimpossible.
e)    Therefore*.
f)     Therefore*.
g)    But*, therefore*.
h)   Isaynextthat*.
i)     Forif*, and*, that*, sothat*, whichisimpossible.
j)     Therefore*.
k)    Andsince*, let*.
l)     Isaythat*.
m)  Forif*, and*, therefore*.
n)   But*, therefore*, whichiscontrarytothehypothesis.
o)    Therefore*.
p)   Similarlywecanprovethat*.
q)   Forifitisand*, whichisimpossible, therefore*.
r)    Therefore*.
s)    But*, therefore*.
t)     Isaynextthat*.
u)   Forif*, and*, that*, sothat*, whichisimpossible.
v)    Therefore*.
w)  Andsince*, therefore*.
x)    Butfurther*, therefore*.
y)    Therefore*.
z)    But*, therefore*.
aa) Let*.
bb)                  Simliarlythenwecanprovethat*.
cc)  Andsince*, therefore*.
dd)                  Butfurther*, therefore*.
ee) Therefore*.
ff)   But*, therefore*.
gg) Let*.
hh)                  Similarlythenwecanprovethat*.
ii)    Andsince*, therefore*.
jj)    Therefore*.
kk) But*, therefore*, whichisabsurd.
ll)    Therefore*.
mm)               QED.
14)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forifpossiblelet*, andlet*.
c)    Nowsince*, let*, therefore*.
d)   And*.
e)    Butif*, *, therefore*.
f)     Now*, for*.
g)    Therefore*, whichisimpossible.
h)   Therefore*.
i)     QED.
15)         If*, *.
a)    Let*, Isaythat*.
b)   Forlet*.
c)    Itisthenmanifestthat*.
d)   Nowsince*, *.
e)    Butif*, *, therefore*.
f)     Butfurther*, therefore*.
g)    Butif*, *, sothat*, hence*.
h)   But*, therefore*.
i)     And*, and*, therefore*.
j)     Similarlywecanprovethat*.
k)    Isaynextthat*.
l)     Forsince*, *.
m)  But*, therefore*.
n)   *.
o)    Therefore*.
p)   And*, and*.
q)   Therefore*.
r)    QED.
16)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forifpossiblesolet*.
c)    Now*, and*, therefore*.
d)   But*, therefore*, whichisabsurd.
e)    Therefore*.
f)     QED.
17)         If*, *.
a)    Forlet*, andlet*, Isaythat*.
b)   Forifpossiblelet*, thereforealternately*.
c)    But*, and*.
d)   Therefore*.
e)    And*.
f)     Therefore*, sothat*.
g)    Andsince*, and*, therefore*.
h)   But*, sothat*.
i)     But*, therefore*, whichisimpossible.
j)     Therefore*.
k)    QED.
18)         Given*, toinvestigatewhether*.
a)    Let*, andlet*.
b)   Now*.
c)    Andif*, ithasbeenprovedthat*.
d)   Nextlet*, andlet*.
e)    Then*.
f)     Firslet*, therefore*.
g)    Therefore*, therefore*.
h)   Nextlet*, Isaythat*.
i)     Forifpossiblelet*.
j)     Therefore*.
k)    But*, therefore*.
l)     Hence*, therefore*.
m)  Buthypothesis*, whichisabsurd.
n)   Therefore*.
o)    QED.
19)         Given*, toinvestigatewhen*.
a)    Let*.
b)   The greektext of this proposition is corrupt, and the intact portion of the proof is erroneous, according to Heath. Nevertheless, analogously to Proposition18, the condition that a fourth proportional to ABC exists is that A measure the product of B and C. Editor.
20)         *.
a)    Let*, Isaythat*.
b)   Forlet*, andlet*, let*.
c)    Then*.
d)   Firstlet*, then*.
e)    Nextlet*, therefore*.
f)     Let*.
g)    Isaythat*.
h)   Forifpossiblelet*.
i)     Now*, therefore*.
j)     But*. Therefore*., whichisabsurd.
k)    Therefore*.
l)     Andbyhypothesis*.
m)  Therefore*.
n)   QED.
21)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, *, sothat*.
c)    But*, therefore*.
d)   QED.
22)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, if*, *, sothat*.
c)    But*.
d)   Therefore*.
e)    QED.
23)         If*, *.
a)    Forlet*, Isaythat*.
b)   Let*, therefore*.
c)    But*, therefore*.
d)   And*.
e)    Therefore*.
f)     QED.
24)         If*, *.
a)    For*, Isaythat*.
b)   Forsince8, *.
c)    Forthesamereason*, sothat*, andtherefore*.
d)   QED.
25)         If*, *.
a)    Forfrom*, let*, Isaythat*.
b)   Forlet*, therefore*.
c)    But*, therefore*.
d)   And*, therefore*.
e)    QED.
26)         If*, *.
a)    Forfrom*, let*, Isaythat*.
b)   Forsince*, let*, therefore*.
c)    Forthesamereason*, sothat*.
d)   QED.
27)         If*, *.
a)    Forfrom*, let*.
b)   Isaythat*.
c)    Let*, therefore*.
d)   But*, therefore*.
e)    Therefore*.
f)     QED.
28)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    And*, therefore*.
d)   Butif*, *.
e)    Therefore*.
f)     QED.
29)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, therefore*.
c)    And*, therefore*.
d)   Thus*.
e)    QED.
30)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forsince*, let*, Isaythat*.
c)    Forifpossiblelet*.
d)   Thensince*, therefore*.
e)    Therefore*.
f)     Therefore*, whichisabsurdfor*.
g)    Therefore*, therefore*.
h)   Thus.
i)     Forthisreasonthen*.
j)     QED.
31)         If*, *.
a)    Forlet*, Isaythat*.
b)   Forif*, *.
c)    Let*, andlet*.
d)   Now*, therefore*.
e)    Andsince*, and*, therefore*.
f)     But*, therefore*.
g)    But*, therefore*, whichisimpossible.
h)   Therefore*.
i)     Therefore*.QED.
32)         *.
a)    Forlet*, Isaythat*.
b)   Nowthat*, for*.
c)    Isaythat*.
d)   Forlet*.
e)    Sincethen*, and*, therefore*.
f)     And*, therefore*.
g)    Similarlywecanprovethat*.
h)   QED.
33)         If*, *.
a)    Forlet*, Isaythat*.
b)   Nowthat*, for*.
c)    isaynextthat*.
d)   Forif*, *, sothat*.
e)    Therefore*.
f)     QED.
34)         If*, *.
a)    Forlet*, Isaythat*.
b)   Nowthat*, for*.
c)    Isaynextthat*.
d)   Forif*, *.
e)    Forifnot*, whichiscontrarytothehypothesis.
f)     Thus*.
g)    Butitwasalsoproved*.
h)   Therefore*.
i)     QED.
35)         If*, *.
a)    Let*, andlet*, Isaythat*.
b)   Forlet*, and*.
c)    Thensince*, and*, therefore*.
d)   Andsince*, while*, therefore*.
e)    *.
f)     Thereforealso*, therefore*.
g)    But*, therefore*.
h)   Therefore*.
i)     QED.
36)         If*, *, andif*, *.
a)    Forlet*, let*, Isaythat*.
b)   For*, let*, therefore*.
c)    Therefore*.
d)   And*, therefore*.
e)    Therefore*, therefore*.
f)     And*, therefore*.
g)    But*, therefore*.
h)   Nowlet*, therefore*.
i)     Therefore*.
j)     And*, therefore*.
k)    But*, and*.
l)     Therefore*.
m)  Isayalsothat*.
n)   Forifpossiblelet*, and*.
o)    And*, therefore*.
p)   Butfurther*, therefore*.
q)   Andsince*, therefore*.
r)    Andbyhypothesis*, therefore*.
s)    But*, therefore*.
t)     And*, and*.
u)   Therefore*.
v)    But*, and*, and*, therefore*.
w)  But*, therefore*.
x)    Let*.
y)    And*.
z)    Now*, therefore*.
aa) Therefore*.
bb)                  But*, therefore*.
cc)  Therefore*.
dd)                  And*, therefore*, whichisimpossible.
ee) Therefore*.
ff)   And*, and*, therefore*.
gg) QED.

Keine Kommentare: